SUBGEOMETRICALLY ERGODIC AUTOREGRESSIONS
نویسندگان
چکیده
منابع مشابه
Computable Convergence Rates for Subgeometrically Ergodic Markov Chains
In this paper, we give quantitative bounds on the f -total variation distance from convergence of an Harris recurrent Markov chain on an arbitrary under drift and minorisation conditions implying ergodicity at a sub-geometric rate. These bounds are then specialized to the stochastically monotone case, covering the case where there is no minimal reachable element. The results are illustrated on ...
متن کاملBayesian Vector Autoregressions
This article provides an introduction to the burgeoning academic literature on Bayesian Vector Autoregressions, benchmark models for applied macroeconomic research. We first explain Bayes’ theorem and the derivation of the closed-form solution for the posterior distribution of the parameters of the model given data. We further consider parameter shrinkage, a distinguishing feature of the prior ...
متن کاملPrior Selection for Vector Autoregressions∗
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-ofsample forecasts, particularly for models with many variables. A potential solution to this problem is to use informative priors, in order to shrink the richly param...
متن کاملModeling Expectations with Noncausal Autoregressions
This paper is concerned with univariate noncausal autoregressive models and their potential usefulness in economic applications. We argue that noncausal autoregressive models are especially well suited for modeling expectations. Unlike conventional causal autoregressive models, they explicitly show how the considered economic variable is a¤ected by expectations and how expectations are formed. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Theory
سال: 2020
ISSN: 0266-4666,1469-4360
DOI: 10.1017/s0266466620000419